

**Final Exam** Subject: Computer Programming (2) - ECE 214C Date: Mon 05/01/2015 Duration: 3 hours

Attempt **5** of the following questions (**including** questions 1 and 2)

**№** of Questions: 6 in 2 page(s) Total Mark: 90

### **Question 1:**

(18 Marks)





### **Question 2:**

(18 Marks) For the three questions that you will solve later: (6 Marks) a) avoid syntax and runtime errors, b) (6 Marks) validate the user input, (6 Marks) C) prompt the user with meaningful instructions, and d) (6 Marks)<sup>\$</sup> write the code using a clean style.

# **Ouestion 3:**

(18 Marks) Write a full program including three methods for printing the following patterns using only one '\*' and one ' ' per method.

| <b>b) (</b> 6 Marks) | <b>c)</b> (6 Marks) |
|----------------------|---------------------|
| * *                  | *                   |
| * *                  | ***                 |
| *                    | ****                |
| * *                  | ***                 |
| * *                  | *                   |
|                      | <b>b)</b> (6 Marks) |

<sup>\$</sup> Bonus

### **Question 4:**

The factorial of a nonnegative integer *n* is written as *n*! (pronounced "n factorial") and is defined as follows:

 $n! = \begin{cases} n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1 & , n \ge 1 \\ 1 & , n = 0 \end{cases}$ 

For example,  $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ , which is 120.

Write a full program including three methods:

a)

fact that takes a nonnegative integer and returns its factorial, (6 Marks)

b)

nbase that estimates the value of the mathematical constant *e* by using the following formula, and 
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!}$$
. (6 Marks)

c)

nexp that takes a real number x and computes the value of  $e^x$  by using the following formula.  $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!}.$ 

## **Question 5:**

#### (18 Marks)

(18 Marks)

(18 Marks)

In survey engineering, a *traverse* is an *n*-sided closed polygon. *Traverse angle balancing* is a process intended for adjusting (correcting) the measured internal angles of a given traverse according to the following equations. The target of this process is to make the actual sum of the corrected angles the same as the theoretical sum (*tsum*).

 $tsum = 180 \cdot (n-2)$ 

$$asum = \left(\sum_{i=1}^{n} a_i\right)$$

error = asum - tsum

correction = error/n

 $\hat{a}_i = a_i - correction \forall i \in [1, n]$ 

Create a class Traverse and provide:

| a)        |                                                                                                                                  | (6 Marks)       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|
|           | a constructor that takes an array with three or more traverse angles $a_1, a_2, \ldots, a_n$ ,                                   |                 |
| b)        |                                                                                                                                  | (6 Marks)       |
|           | a method correct for performing traverse angle balancing, and                                                                    |                 |
| <b>c)</b> |                                                                                                                                  | (6 Marks)       |
|           | a method getAngles that returns the traverse angles.                                                                             |                 |
| Exampl    | le: If the measured angles are $a = \{61.5, 60.5, 59.5\}$ , then the corrected angles should be $\hat{a} = \{61.6, 60.5, 59.5\}$ | $0,60.0,59.0\}$ |

### **Question 6:**

An  $n^{th}$  degree polynomial is expressed as:

$$f(x) = \sum_{i=0}^{n} a_i x^i, a_n \neq 0$$

Create a class Polynomial and provide:

|                                                                                                                   | (6 Marks)                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a constructor that takes an array to initialize the polynomial parameters.                                        |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                   | (6 Marks)                                                                                                                                                                                                                                                                                                                                                                                  |
| a method f that takes a real number x and returns the value of $f(x)$ .                                           |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                   | (6 Marks)                                                                                                                                                                                                                                                                                                                                                                                  |
| a method toString that returns a string representing the polynomial on the form:                                  |                                                                                                                                                                                                                                                                                                                                                                                            |
| $f(x) = a_0 + a_1 x + \ldots + a_n x^n$                                                                           |                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>le</b> : Assuming that the polynomial parameters are $\{1, 0, -2, 3\}$ , the method $f(1)$ should return 2.0 a | nd the method                                                                                                                                                                                                                                                                                                                                                                              |
| ]                                                                                                                 | a constructor that takes an array to initialize the polynomial parameters.<br>a method f that takes a real number $x$ and returns the value of $f(x)$ .<br>a method toString that returns a string representing the polynomial on the form:<br>$f(x) = a_0 + a_1x + \ldots + a_nx^n$<br>le: Assuming that the polynomial parameters are {1, 0, -2, 3}, the method f(1) should return 2.0 a |

toString() should return:

 $f(x) = 1.00 - 2.00x^2 + 3.00x^3$ 

Good Luck Dr. Islam ElShaarawy

ECE 214C