Benha University

Faculty of Engineering (at Shoubra)
Electrical Engineering Department
$2^{\text {nd }}$ Year (Electronics and Communications Engineering)

Attempt 5 of the following questions (including questions 1 and 2)

Final Exam
Subject: Computer Programming (2) - ECE 214C
Date: Mon 05/01/2015
Duration: 3 hours
№ of Questions: 6 in 2 page(s)
Total Mark: 90

Question 1:

Determine the output for each of the following code snippets (assuming successful compilation):
a) (3 Marks)
c) (3 Marks)
int $i=0$;
do \{
System.out.println(++i);
System.out.println(i++);
\} while (i < 5);
e) (3 Marks)

```
for (int i = 0; i < 5; i++) {
```

for (int i = 0; i < 5; i++) {
for (int j = 0; j <= 5; j++) {
for (int j = 0; j <= 5; j++) {
if (j == i + 1) break;
if (j == i + 1) break;
System.out.print(j);
System.out.print(j);
}
}
System.out.println();
System.out.println();
}

```
}
```

```
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 5; j++) {
        char c;
        switch (Math.abs(i - j)) {
            case 0 : c = '\\'; break;
            case 2 : c = '+' ; break;
            case 4 : c = '.' ; break;
            default: c = ' ' ; break;
        }
        System.out.print(c);
    }
    System.out.println();
}
```


Question 2:

For the three questions that you will solve later:
a)
avoid syntax and runtime errors,
b)
validate the user input,
c)
prompt the user with meaningful instructions, and
d)
write the code using a clean style.

Question 3:

(18 Marks)
Write a full program including three methods for printing the following patterns using only one '*' and one ' ' per method.
a) (6 Marks)
b) (6 Marks)
c) (6 Marks)

\square
\square

[^0]
Question 4:

The factorial of a nonnegative integer n is written as n ! (pronounced " n factorial") and is defined as follows:
$n!=\left\{\begin{array}{cl}n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1 & , n \geqslant 1 \\ 1 & , n=0\end{array}\right.$
For example, $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, which is 120 .
Write a full program including three methods:
a)
fact that takes a nonnegative integer and returns its factorial,
b)
nbase that estimates the value of the mathematical constant e by using the following formula, and $e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}$.
c)
nexp that takes a real number x and computes the value of e^{x} by using the following formula.
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}$.

Question 5:

In survey engineering, a traverse is an n-sided closed polygon. Traverse angle balancing is a process intended for adjusting (correcting) the measured internal angles of a given traverse according to the following equations. The target of this process is to make the actual sum of the corrected angles the same as the theoretical sum (tsum).

$$
\begin{aligned}
\text { tsum } & =180 \cdot(n-2) \\
\text { asum } & =\left(\sum_{i=1}^{n} a_{i}\right) \\
\text { error } & =\text { asum }- \text { tsum } \\
\text { correction } & =\text { error } / n \\
\hat{a}_{i} & =a_{i}-\text { correction } \forall i \in[1, n]
\end{aligned}
$$

Create a class Traverse and provide:
a)
a constructor that takes an array with three or more traverse angles $a_{1}, a_{2}, \ldots, a_{n}$,
b)
a method correct for performing traverse angle balancing, and
c)
a method getAngles that returns the traverse angles.
Example: If the measured angles are $a=\{61.5,60.5,59.5\}$, then the corrected angles should be $\hat{a}=\{61.0,60.0,59.0\}$

Question 6:

An $n^{t h}$ degree polynomial is expressed as:
$f(x)=\sum_{i=0}^{n} a_{i} x^{i}, a_{n} \neq 0$
Create a class Polynomial and provide:
a)
a constructor that takes an array to initialize the polynomial parameters.
b)
a method f that takes a real number x and returns the value of $f(x)$.
c)
a method toString that returns a string representing the polynomial on the form:
$f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$
Example: Assuming that the polynomial parameters are $\{1,0,-2,3\}$, the method $f(1)$ should return 2.0 and the method toString() should return:
$f(x)=1.00-2.00 x^{\wedge} 2+3.00 x^{\wedge} 3$

Good Luck
Dr. Islam ElShaarawy

[^0]: \$ Bonus

